Pharmacological management of stable chronic obstructive pulmonary disease

Once the severity of a patient’s COPD has been quantified by spirometry, appropriate agents—including bronchodilators and inhaled corticosteroids—can be prescribed.

ABSTRACT: COPD is preventable and readily treatable. Pharmacological management includes interventions to promote smoking cessation (e.g., nicotine replacement therapy and non-nicotine drug therapy), domiciliary oxygen therapy for patients who are hypoxemic at rest, and long-acting bronchodilators with or without inhaled corticosteroids. For patients with mild disease and infrequent exacerbations, therapy with short-acting bronchodilators is the current standard. For more symptomatic patients, long-acting bronchodilators are needed to attenuate symptoms and reduce exacerbations. Patients who experience frequent exacerbations while using long-acting bronchodilators may require the addition of inhaled corticosteroids to improve health outcomes. Patients with severe or very severe disease may require therapy consisting of tiotropium, an inhaled corticosteroid, and a long-acting β₂ agonist.

Chronic obstructive pulmonary disease (COPD) is the leading cause of hospitalization and one of the leading causes of mortality in BC. Fortunately, stable COPD is readily treatable. Management of patients exhibiting chest symptoms (Table 1) should begin with spirometry, which can often be done in an office setting. The spirometry measurements can then be used to quantify COPD severity according to guidelines from the Canadian Thoracic Society, the American Thoracic Society, and the European Respiratory Society (Table 2).²³

Accurate staging requires at least three technically acceptable, irregularity-free spiromgrams consisting of expiratory efforts of at least 6 seconds. Additionally, the difference between the two largest measurements of FEV₁ (forced expiratory volume in 1 second) and FVC (forced vital capacity) should be within 0.2 L. COPD is indicated by spirometry if the FEV₁ to FVC ratio postbronchodilator (e.g., after 400 μg of salbutamol [Ventolin]) is 0.7 L or less. Severity of COPD is established by a postbronchodilator measurement of FEV₁ as a percentage of predicted normal. Mild is defined as an FEV₁ that is 80% of predicted or greater; moderate is defined as an FEV₁ between 50% and 80% of predicted; severe is defined as an FEV₁ between 30% and 50% of predicted; and very severe is defined as an FEV₁ less than 30% of predicted.

Once the severity of the patients’ COPD has been quantified, then management approaches can be considered (Table 3). Smoking cessation is recommended for all patients regardless of severity. Vaccination for influenza (every year) and for pneumococcal pneumonia (every 5 to 10 years) is recommended for all patients unless specific contraindications exist. For patients with mild and periodic symptoms, short-acting bronchodilators such as salbutamol can be used either intermittently or on a regular basis for symptomatic relief of dyspnea. Patients with moderate to moderately severe disease can use a long-acting bronchodilator. This can be either an anticholinergic agent such as tiotropium or a β₂ agonist such as salmeterol or formoterol. Patients who have more than one exacerbation per year requiring oral corticosteroids and/or

Don D. Sin, MD, MPH, FRCPC

Dr Sin is an associate professor in the Department of Medicine at the University of British Columbia and a staff respirologist at St. Paul’s Hospital and a Canada Research Chair in COPD.
Pharmacological management of stable chronic obstructive pulmonary disease

Table 1. Indications for spirometry.

<table>
<thead>
<tr>
<th>COPD stage</th>
<th>Spirometry (postbronchodilator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>FEV1 ≥80% of predicted, FEV1/FVC <0.7</td>
</tr>
<tr>
<td>Moderate</td>
<td>FEV1 ≤50% to <80% of predicted, FEV1/FVC <0.7</td>
</tr>
<tr>
<td>Severe</td>
<td>FEV1 ≤30% to <50% of predicted, FEV1/FVC <0.7</td>
</tr>
<tr>
<td>Very severe</td>
<td>FEV1 <30% of predicted, FEV1/FVC <0.7</td>
</tr>
</tbody>
</table>

*FEV1: forced expiratory volume in 1 second †FVC: forced vital capacity
Source: Adapted from Canadian Thoracic Society recommendations

Table 2. COPD staging by spirometry.

| Table 3. Pharmacological management of COPD. |
|---|---|---|---|
| Mild COPD | Moderate COPD | Moderate to severe COPD | Severe to very severe COPD |
| • If patient has persistent symptoms, treat with short-acting bronchodilators around the clock (e.g., ipratropium and salbutamol inhalation [Combivent], 2 puffs q.i.d.). | • Treat with long-acting bronchodilators around the clock (e.g., β2 agonist such as salmeterol and formoterol, or anticholinergic agent such as tiotropium) for symptomatic relief. | • Treat with a long-acting bronchodilator combined with an inhaled corticosteroid (e.g., salmeterol/fluticasone [Advair], 500 mcg, b.i.d., or formoterol/budesonide [Symbicort], 400 mcg, b.i.d.) for prevention of exacerbations and improvement in symptoms. | • Treat with tiotropium and a long-acting β2 agonist/ inhaled corticosteroid combination to provide maximal relief of symptoms and reduce risk of exacerbation. |
| • If the symptoms are periodic, treat on an as-needed basis (e.g., salbutamol inhalation [Ventolin], 2 puffs q.i.d., p.r.n.) | • Counsel for smoking cessation and ensure patient has appropriate vaccinations. | • Counsel for smoking cessation and ensure patient has appropriate vaccinations. | • Counsel for smoking cessation and ensure patient has appropriate vaccinations. |
| • Counsel for smoking cessation and ensure patient has appropriate vaccinations. | | | |

Clinical scenarios

Management of mild COPD:
Patient 1

A 65-year-old man presents with an early morning cough that has bothered him for the past year. The cough is usually productive of mucoid sputum. There is no hemoptysis. He is a current smoker with a 25-pack-a-year smoking history. He has smoked half-a-pack per day, on average, since 15 years of age. Although he admits that for the past 3 years he has been having more chest colds, which can last 2 to 3 weeks at a time, he feels well in general and has remained asymptomatic in his daily activities. He has no significant occupational history. There is no history of allergy, asthma, sinusitis, or respiratory infections in his early childhood. There is no family history of asthma or COPD. He has had no previous hospitalizations for any respiratory problems. He has no antibiotics should have inhaled corticosteroids added to a long-acting bronchodilator to reduce exacerbation rates and improve health status. Patients with severe or very severe disease may require the regular use of a long-acting β2 agonist/inhaled corticosteroid combination in conjunction with tiotropium.4
comorbidities. The physical examination is normal. How should this patient be managed?

With the patient’s history of smoking and symptoms of cough and sputum production, you suspect that he has COPD. The next step is to obtain lung function measurements to support your diagnosis and to assess the degree of severity of the airflow limitation, which can help guide treatment and assist with a prognosis.

When spirometry is performed on this patient, his postbronchodilator FEV₁ is 3.0 L (or 87% of predicted) and his FVC is 4.41 L (or 94% of predicted). The FEV₁ to FVC ratio is 0.68 (or 75% of predicted). Although both FEV₁ and FVC are in the “normal” range, the reduced FEV₁ to FVC ratio (especially in the presence of an appropriate smoking history and symptoms) objectively confirms a diagnosis of COPD.² The patient’s post-bronchodilator FEV₁ of greater than 80% of predicted indicates that he has mild COPD.¹

Smoking cessation: This is the most important intervention for this patient. The family physician should counsel the patient to stop smoking and consider a referral to a smoking cessation clinic for additional support, such as with cognitive and behavioral therapy.³ Cognitive therapy can include techniques of distraction, positivism, relaxation, and mental imagery.⁴ Behavioral interventions can include avoidance of triggers for smoking, such as alcohol or coffee, stress, and associations with other smokers. Counseling is effective for about 22% of smokers, leading them to become sustained quitters.⁵ Even a brief intervention in a physicians’ office can help 5% to 10% of smokers quit.⁶ Drug therapy is often needed for the remaining smokers. Pharmacological therapies can be divided into two large groups: nicotine replacement therapy and non-nicotine drug therapy. Nicotine replacement is usually provided as a patch, gum, or lozenges. The choice between these formulations is based on patient preference and smoking habits. High doses of nicotine replacement are more effective than lower doses but cause more side effects.³ However, for those patients alternative to bupropion. A recent study indicates that cessation was achieved over 3 months in more than 40% of smokers (compared with bupropion, which achieved a cessation rate of 30%). At 1 year, smokers taking varenicline had higher cessation rates than those who took bupropion (23% versus 14%).⁸⁻¹⁰

Other therapies: In addition to smoking-cessation therapy, the patient should also receive vaccine for pneumococcal pneumonia every 5 to 10 years (a recommendation that applies especially to COPD patients 65 years or older) and yearly influenza vaccination unless contraindications exist. If the patient remains symptomatic despite smoking cessation, treatment with a short-acting bronchodilator is needed. The short-acting bronchodilators can be given on an as-needed basis if the patient has periodic symptoms, or around the clock if the patient has persistent symptoms. In most cases patients will respond to either an inhaled short-acting β₂ agonist such as salmeterol or an anticholinergic such as ipratropium by itself. However, with persistent symptoms, a combination of the two may be necessary.¹¹

The family physician should counsel the patient to stop smoking and consider a referral to a smoking cessation clinic for additional support, such as with cognitive and behavioral therapy.
Management of moderate COPD: Patient 2
A 72-year-old woman has moderate COPD that was diagnosed 5 years earlier. Upon presentation her FEV₁ is 1.5 L or 54% of predicted. She has managed to stop smoking. Although she is taking combination bronchodilator therapy (salbutamol and ipratropium), two puffs four times per day, she is still short of breath when walking more than 100 m or cleaning the house. What additional treatments are needed?

In this patient, short-acting bronchodilators are no longer able to fully control her symptoms. The currently available evidence indicates that long-acting β₂ agonists and long-acting anticholinergics improve respiratory symptoms and reduce the risk of exacerbations beyond that achieved by short-acting bronchodilators.¹¹ There is, however, insufficient evidence to recommend one class of long-acting bronchodilators over another class. There is a growing body of evidence that inhaled corticosteroids in combination with a long-acting β₂ agonist benefit COPD patients who have an FEV₁ of less than 60% of predicted by reducing the rate of exacerbations and improving health status.¹² Monotherapy with tiotropium may be just as effective as a combination of salmeterol and fluticasone in reducing exacerbations in patients with moderate disease.⁴ However, one large randomized controlled trial indicates that tiotropium is also associated with increased mortality compared with combination therapy.¹³ A 2-year randomized controlled trial (sponsored by GlaxoSmithKline) of 1323 patients with an FEV₁ between 50% and 80% of predicted showed no differences in the exacerbation rate between tiotropium and salmeterol/fluticasone combination. However, patients in the salmeterol/fluticasone arm had better quality of life and experienced 44% fewer deaths than patients taking tiotropium.¹³ Thus, for this patient with moderate COPD, in addition to vaccination for influenza and pneumococcal pneumonia and short-acting bronchodilators, a combination therapy with inhaled corticosteroid and a long-acting β₂ agonist can be provided. The alternative would be to use tiotropium in lieu of the combination therapy.

The currently available evidence indicates that long-acting β₂ agonists and long-acting anticholinergics improve respiratory symptoms and reduce the risk of exacerbations beyond that achieved by short-acting bronchodilators.

Management of severe COPD: Patient 3
A 70-year-old man who has had very severe COPD for 13 years has an FEV₁ of 0.9 L (30% of predicted). He is on a number of medications, including short-acting β₂ agonists, ipratropium bromide, and an inhaled corticosteroid. He stopped smoking 2 years ago but he has dyspnea at rest even on these medications. He has had two hospitalizations for COPD in the last 5 years and needed oral corticosteroids on two different occasions over the past year. What pharmacological treatment should be recommended for this patient?

The recently published large randomized trials have shed tremendous light on the treatment of patients with severe COPD.⁴¹² Monotherapy with inhaled corticosteroids is clearly inferior to combination therapy with an inhaled corticosteroid and a long-acting β₂ agonist.¹² Over 3 years, combination therapy would be expected to reduce exacerbations by 25% compared with placebo, whereas a long-acting β₂ agonist and an inhaled corticosteroid would be expected to reduce exacerbation by 15% and 18%, respectively.¹² Tiotropium is also effective in reducing exacerbations in the short term. However, the Canadian Optimal Study showed that over 1 year, adding combination therapy to tiotropium reduced the rate of hospitalization for COPD by 47% com-

<table>
<thead>
<tr>
<th>Target muscles</th>
<th>Type of exercise</th>
<th>Duration</th>
</tr>
</thead>
</table>
| Aerobic exercise | Lower limb | • Walking
| | | • Climbing stairs |
| Resistance training | Upper limb | • Weight lifting with light loads (6 to 10 repetitions) |
| Aquatic exercises | General fitness | • Swimming
| | | • Aquasize |

Table 4. Simple exercise program for patients with COPD.
pared with tiotropium alone. More-
over, patients taking combination
therapy and tiotropium had better
quality of life and improved lung func-
tion compared with patients taking
tiotropium alone. Taken together,
these data indicate that for patients
with severe COPD (FEV₁ less than
50% of predicted) and with recurrent
exacerbations, tiotropium in conjunc-
tion with a combination of inhaled
corticosteroid and long-acting β₂ ago-
nist should be considered. At this time,
long-term oral corticosteroid therapy
is generally not recommended be-
cause of potential side effects. Oral
corticosteroids should be reserved for
short-term use during exacerbations.
Oral theophyllines have fallen out of
favor in recent years owing to their
narrow therapeutic range and toxicity
profile. In general, most patients can
be managed without oral theophyl-
lines; however, in patients whose
symptoms are refractory to a combi-
nation therapy that includes an inhaled
corticosteroid, long-acting β₂ agonist,
and tiotropium, oral theophyllines
may be considered. For those who are
prescribed oral theophyllines, close
follow-up is needed (along with blood
level monitoring) to ensure toxicity
does not develop.

For patients with severe, moderate,
or mild COPD, drug therapy
should be provided in concert with
nonpharmacological therapies. This
includes exercise training, which in
many cases can be performed at home
(Table 4).

Conclusions
With the recent improved understand-
ing of the pathogenesis of COPD, pri-
mary preventions provide the best
hope to control the rapid rise of this
disease. Smoking cessation is the cor-
nerstone of management and therapy
with bronchodilators is the first-line
pharmacological therapy for sympto-
matic patients. For more advanced
disease states, a combination of in-
haled corticosteroid and long-acting
β₂ agonist should be considered. For
patients with mild to moderate COPD
and infrequent exacerbations, tiotropi-
um or a long-acting β₂ agonist is like-
ly sufficient. However, for severe or
very severe COPD, combination ther-
apy is usually required, and for pa-
tients with persistent symptoms and
 frequent exacerbations requiring hos-
pitalizations, a combination of inhaled
corticosteroid, long-acting β₂ agonist,
and tiotropium may be needed for
optimal outcomes.

Competition interests
Dr Sin has received honoraria for speaking
from GlaxoSmithKline (GSK), research
funding from GSK, AstraZeneca, and Boehr-
gerger Ingelheim, and served as a consult-
tant to GSK and AstraZeneca.

References
1. Hospital crunch. Vancouver Sun, 30 May
2007.
State of the Art Compendium: Canadian
Thoracic Society recommendations for
the management of chronic obstructive
 pulmonary disease. Can Respir J 2004;11
suppl B:7B-59B.
Interpretative strategies for lung function
4. Aaron SD, Vandemheen KL, Fergusson
D, et al. Tiotropium in combination with
placebo, salmeterol, or fluticasone-salm-
eterol for treatment of chronic obstruc-
tive pulmonary disease: A randomised
5. Schroeder SA. What to do with a patient
al. Effects of randomized assignment to
a smoking cessation intervention and
changes in smoking habits on respirato-
ry symptoms in smokers with early
chronic obstructive pulmonary disease:
106:410-416.
1985;88:322-324.
Varenicline, an alpha4beta2 nicotinic
acetylcholine receptor partial agonist,
vs sustained-release bupropion and place-
bo for smoking cessation: A randomized
controlled trial. JAMA 2006;296:47-55.
Efficacy of varenicline, an alpha4beta2
nicotinic acetylcholine receptor partial
agonist, vs placebo or sustained-release
bupropion for smoking cessation: A ran-
domized controlled trial. JAMA 2006;
296:63-63.
Effect of maintenance therapy with
varenicline on smoking cessation: A ran-
domized controlled trial. JAMA 2006;
296:64-71.
Contemporary management of chronic
obstructive pulmonary disease: Scientific
review. JAMA 2003;290:2301-2312.
Salmeterol and fluticasone propionate
and survival in chronic obstructive pul-
356:775-789.
13. Wedzicha JA, Calverley PM, Seemungal
TA, et al. The prevention of chronic
obstructive pulmonary disease exacer-
bations by salmeterol/fluticasone propi-
one or tiotropium bromide. Am J Respir